Multiple solutions to p-Laplacian problems with concave nonlinearities
نویسندگان
چکیده
منابع مشابه
MULTIPLE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS INVOLVING CONCAVE-CONVEX NONLINEARITIES
Since A. Ambrosetti and P.H. Rabinowitz proposed the mountain pass theorem in 1973 (see [1]), critical point theory has become one of the main tools for finding solutions to elliptic problems of variational type. Especially, elliptic problem (1.2) has been intensively studied for many years. One of the very important hypotheses usually imposed on the nonlinearities is the following Ambrosetti-R...
متن کاملp-LAPLACIAN PROBLEMS WITH JUMPING NONLINEARITIES
We consider the p-Laplacian boundary value problem −(φp(u(x)) = f(x, u(x), u′(x)), a.e. x ∈ (0, 1), (1) c00u(0) + c01u ′(0) = 0, c10u(1) + c11u ′(1) = 0, (2) where p > 1 is a fixed number, φp(s) = |s|p−2s, s ∈ R, and for each j = 0, 1, |cj0|+ |cj1| > 0. The function f : [0, 1]× R2 → R is a Carathéodory function satisfying, for (x, s, t) ∈ [0, 1]× R2, ψ±(x)φp(s)− E(x, s, t) ≤ f(x, s, t) ≤ Ψ±(x)φ...
متن کاملExistence and multiplicity of nontrivial solutions for $p$-Laplacian system with nonlinearities of concave-convex type and sign-changing weight functions
This paper is concerned with the existence of multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions. With the help of the Nehari manifold and Palais-Smale condition, we prove that the system has at least two nontrivial positive solutions, when the pair of parameters $(lambda,mu)$ belongs to a c...
متن کاملLocal analytic solutions to some nonhomogeneous problems with p-Laplacian
Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation ( tΦp (y ′) ) ′ +(−1)tΦq(y) = 0, on (0, a), where Φr(y) := |y| r−1 y, 0 < r, p, q ∈ R, i = 0, 1, 1 ≤ n ∈ N, a is a small positive real number. The initial conditions to be added to the equation are y(0) = A 6= 0, y′(0) = 0, for any real number A. We present a method how the solution can be e...
متن کاملMultiple Positive Solutions for Kirchhoff Type Problems Involving Concave and Convex Nonlinearities in R
In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2010
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.08.016